

Recall the exponent laws for integers bases and whole number exponents

Product of powers: $\quad a^{m} \cdot a^{n}=a^{m+n}$
Quotient of powers: $\quad a^{m} \div a^{n}=a^{m-n}, a \neq 0$
Power of a power: $\quad\left(a^{m}\right)^{n}=a^{m n}$
Power of a product: $\quad(a b)^{m}=a^{m} b^{m}$
Power of a quotient: $\quad\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}, b \neq 0$

Jan 30-4:12 PM

Connect	Simplify as Single Power
Product of Product	Power of Quotient
$\left(a b^{2}\right)^{5}$	$\left(\frac{b^{0}}{c^{0}}\right)^{3}$
$a^{5} b^{5}$	$\frac{b^{3}}{c^{3}}$

Jan 30-4:17 PM

$$
\begin{aligned}
& \left(\frac{x^{2}}{y^{2}}\right)^{-3} \\
& \frac{x^{-6}}{y^{-6}}=\frac{y^{6}}{x^{6}}
\end{aligned}
$$

Sometimes you need to do more than 1 law to find the answer

Jan 30-4:17 PM

Connect	Express as a Single Power
Example 4:	Laws to Remember
$\begin{gathered} \left(x^{\frac{3}{2}} y^{2}\right)\left(x^{\frac{1}{2}} y^{-1}\right) \\ x^{\frac{4}{2}} y^{\prime} \\ x^{2} y \end{gathered}$	Product of powers: $\quad a^{m} \cdot a^{n}=a^{m+n}$ Quotient of powers: $\quad a^{m} \div a^{n}=a^{m-n}, a \neq 0$ Power of a power: $\quad\left(a^{m}\right)^{n}=a^{m n}$ Power of a product: $\quad(a b)^{m}=a^{m} b^{m}$ Power of a quotient: $\quad\left(\frac{a}{b}\right)^{m}=\frac{a^{m}}{b^{m}}, b \neq 0$ Sometimes you need to do more than 1 law to find the answer

Connect Express as a Single Power

$$
\left(\frac{4 b^{\frac{1}{2}}}{a^{4}}\right)^{\frac{1}{2}} \text { (12) }
$$

Sometimes you need to do

$$
=\frac{4^{\frac{1}{2}} b^{\frac{1}{4}}}{a^{4 / 2}} \longrightarrow
$$ more than 1 law to find the $\frac{\sqrt{4} b^{\frac{1}{4}}}{a^{2}}$ \qquad

Textbook Questions:

Page 242 \# 11, 14,15,16
Page 243 \# 21,22

Jan 30-4:17 PM

