

Powers with Rational Exponents with Numerator 1
When n is a natural number and x is a rational number, $x^{\frac{1}{n}}=\sqrt[n]{x}$
In Math 9, you learned that for powers with integral (same) bases and whole number exponents.

We can extend this law to powers with fractional exponents with numerator (top number) 1 .

$$
a^{\frac{1}{2}} \times a^{\frac{1}{2}}=a^{\frac{1}{2}+\frac{1}{2}}
$$

Jan 30-4:12 PM

Powers with Rational Exponents with Numerator

When n is a natural number and x is a rational number, $x^{\frac{n}{n}}=\sqrt[n]{x}$
We can extend this law to powers with fractional exponents with numerator (top number) 1.

$a^{\frac{1}{2}}=\sqrt{a} \quad$ which means they are equivalent
also, $a^{\frac{1}{3}}=\sqrt[3]{a}$ and the pattern continues

POWERS WITH RATIONAL EXPONENTS

When " m " and " n " are natural numbers, and x is a rational number.

and

Jan 30-4:17 PM

Comnect	Evaluate each Power
Example 3: $\begin{aligned} & (-64)^{\frac{1}{3}}= \\ & \sqrt[3]{-64} \\ & =-4 \end{aligned}$	STEPS: Use the Power law to help change to a radical with the denominator as the index of the radical.
$\begin{aligned} & 27^{\frac{4}{3}} \\ &=(\sqrt[3]{27})^{4} \\ &=(3)^{4} \\ &=81 \end{aligned}$	Evaluate the radical

Connect	Evaluate each Power
Example 2: $\begin{aligned} & 0.49^{\frac{1}{2}}= \\ & \sqrt[2]{0.49} \\ & =\sqrt{0.49} \\ & =0.7 \end{aligned}$	STEPS: need to if 2 Use the Power law to help change to a radical with the denominator as the index of the radical.
$\begin{aligned} & 0.04^{\frac{3}{2}} \\ & =(\sqrt{0.04})^{3} \\ & =(0.2)^{3} \\ & =0.008 \end{aligned}$	Evaluate the radical

Jan 30-4:17 PM

Jan 30-4:17 PM
Jan 30-4:17 PM

Textbook Questions:

Page 227 \# 3-12, 16
Page 228 \# 17-19

