

Jan 30-4:12 PM
Connect \quad NOTES:
Cartesian coordinate system
Points in the (x, y) plane are defined by their perpendicular
distance from the x-and y-axis relative to the orgin, 0
The x-coordinate tells us the horizontal distance from the
y-axis to the point.
The y-coordinate tells us the vertical distance from the
x-axis to the point.
Jan 30-4:17 PM

Connect	NOTES:
Distance Between two Points	
	The horizontal distance between the points is $x_{2}-x_{1}$. $4-1=3$ The vertical distance between the points is $y_{2}-y_{1}$. $.5-1=4$ To find the distance between A and B we need to make a third point (C) to create a right angle triangle.

Practice	EXAMPLE 1
Calculate the distance between the following pair of points	
$E(3,7)$ and $F(9,4)$. $A(-5,-2)$ and $B(-7,-6)$
$\begin{aligned} & \Delta x=9.3=6 \\ & \Delta y=4-7=-3 \end{aligned}$	$\begin{aligned} \Delta x & =-5-(-7) \\ & =2 \end{aligned}$
$D^{2}=6^{2}+3^{2}$	$\begin{aligned} \sigma_{y} & =-2-(-6) \\ & =4 \end{aligned}$
$\begin{aligned} & =36+9 \\ D^{2} & =45 \end{aligned}$	$D^{2}=2^{2}+4^{2}$
$D=\sqrt{45}$	$\begin{aligned} & =4+16 \\ n^{2} & =20 \end{aligned}$
	$D=\sqrt{20} \quad D=4.5$

Practice	YOU TRY!
Calculate the distance between the following pair of points	
$C(3,-5)$ and $D(6,-3)$	$H(-5,-2)$ and $I(-7,-6)$
$\Delta x=3-6=-3$	$\Delta x=-5-(-7)=2$
$D y=-5-(-3)=-2$	$\Delta y=-2-(-6)=4$
$D^{2}=3^{2}+2^{2}$	$D^{2}=2^{2}+4^{2}$
$=9+4$	$=4+16$
$D^{2}=13$	$D^{2}=20$
$D=\sqrt{13}$	$D=\sqrt{20}$
$D=3.6$	$D=4.5$

Connect \quad NOTES:
The distance between two general points $\mathrm{A}\left(\mathrm{x}_{1}, y_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, y_{2}\right)$
$\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
EXAMPLE: What is the distance between the points $\mathrm{A}(5,-1), \mathrm{B}(-4,5)$
$\sqrt{\left((5-(-4))^{2}+(-1-5)^{2}\right.}$
$\sqrt{.9^{2}+(-6)^{2}}$
$\sqrt{81+36}=10.8$
$\sqrt{117}$

Jan 30-4:17 PM

Practice	NOTES:
The Mid-Point of a Line	
	The x -coordinate $\left(\frac{x_{1}+x_{2}}{2}\right)$ mid-point
	$\left(\frac{5+2}{2}\right)$
	3.5
θ	The y-coordinate mid-point $\left(\frac{y_{1}+y_{2}}{2}\right)$
	$\frac{5+1}{2}$
$\begin{align*} & A=(5,5) \tag{3}\\ & B=(2,1) \end{align*}$	midpoint $(3.5,3)$

Practice	YOU TRY!
Find the mid-point of each line segment	
$C(3,-5)$ and $D(6,-3)$	$H(-5,-2)$ and $I(-7,-6)$
$\left[\begin{array}{l}\left.\frac{3+6}{2}, \frac{-5+(-3)}{2}\right] \\ (4.5,-4)\end{array}\right]\left[\begin{array}{c}\frac{-5+(-7)}{2}, \frac{-2+(-6)}{2}\end{array}\right]$	
$(-6,-4)$	

Complete Worksheet:

Jan 30-4:17 PM

