REVIEW OF POWER LAWS GRADE 9

Lesson 3

Use number examples to show why the following exponent laws are true.

Write each of the following as a single power of 10
Use number examples to show why the following exponent laws are true.

$$
\begin{aligned}
(x y)^{a} & =x^{a} y^{a} \\
4^{2} & =2^{2} \cdot 2^{2} \\
16 & =4.4 \\
16 & =16 \\
\left(\frac{2^{2}}{3^{2}}\right)^{3} & =\frac{2^{6}}{3^{6}}
\end{aligned} \left\lvert\, \begin{aligned}
\left(\frac{x^{2}}{y^{0}}\right)^{a}=\frac{x^{a}}{y^{a}} \\
\left(\frac{4}{2}\right)^{2}=\frac{4^{2}}{2^{2}} \\
\left(\frac{2^{2}}{3^{2}}\right)\left(\frac{2^{2}}{3^{2}}\right)\left(\frac{2^{2}}{3^{2}}\right)=\frac{16}{4} \\
4=4
\end{aligned}\right.
$$

Connect
Write each of the following as a single power of 10

Write each of the following as a single power of 10

$$
\begin{gathered}
-10^{3}\left(10^{5}\right)\left(-\frac{1}{10}\right)^{4} \\
\frac{-10^{8}}{1}-\left(\frac{1^{4}}{10^{4}}\right) \\
\frac{-10^{8}}{10^{4}} \\
-10^{4}
\end{gathered}
$$

 Question 2:

$$
\frac{\left(\frac{10^{3} \times 10^{2}}{-10}\right)^{3}}{\left(\frac{10^{5}}{-10}\right)^{3}}
$$

