

Up to Math 9 - you focused on Rational numbers. This year we are going to look at the other side - Irrational numbers.

Lets review the Number set Diagram.

Jan 30-4:12 PM

Connect

Definitions:
Rational Number
Are numbers that have decimal representation that eithon terminate or repeat. They can also be put in the form $\frac{a}{b}$
Radicals that are square roots of perfect squares, cube roots of perfect cubes are also rational numbers.

Examples:

$$
\begin{array}{cllll}
\frac{\text { apples: }}{\sqrt{100}} & \sqrt{0.25} & \sqrt{\frac{9}{64}} & \sqrt[5]{-32} & \sqrt[3]{8} \\
\frac{5}{6} & 0.8^{2} & 0.5 & &
\end{array}
$$

$n=$ is called the index
$x=$ is called the radicand
Example: $\sqrt[5]{-32}$

$$
\text { Cockulator: } 5 \frac{\sqrt{[2 n d]} \times \sqrt{\text { shift }} \times 32=-2]}{-2}
$$

Connect

Irrational Number
Are numbers that cannot be written in the form $\frac{a}{b}$, where a and b are integers, $n \neq 0$. The decimal representation of an irrational number neither terminates nor repeats.
When an irrational number is written as a radical, the radical is the exact value of the irrational number.

Examples:

$$
\begin{array}{lllll}
\sqrt{20.24} & \sqrt{2} & \sqrt{\frac{1}{3}} & \sqrt[4]{12} & \sqrt[3]{9}
\end{array}
$$

In the past we would have known that " $\mathrm{Pi}-\pi$ " would be a great example of an irrational number.

Connect

Classifying Numbers

Tell whether each number is rational or irrational. Explain how you know.

-0.6
terimates

Tell whether each number is rational or irrational. Explain how you know.

Jan 30-4:17 PM


```
Ex 3: Special Case
    a) 0.25555%=\frac{23}{90}
    b)}0.1\overline{2}=\frac{11}{90
    c) 0.1\overline{23}=\frac{122}{990}=\frac{61}{495}
```


Textbook Questions:
 Page 211 \# 3, 4, 5, 7, 15, 16a

